Reflexive Banach spaces not isomorphic to uniformly convex spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly convex Banach spaces are reflexive - constructively

We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the MilmanPettis theorem that uniformly convex Banach spaces are reflexive. Our aim in this note is to present a fully constructive analysis of the Milman-Pettis theorem [11, 12, 9, 13]: a uniformly convex Banach space is reflexive. First, t...

متن کامل

Uniformly Convex Functions on Banach Spaces

We study the connection between uniformly convex functions f : X → R bounded above by ‖ · ‖p, and the existence of norms on X with moduli of convexity of power type. In particular, we show that there exists a uniformly convex function f : X → R bounded above by ‖ · ‖2 if and only if X admits an equivalent norm with modulus of convexity of power type 2.

متن کامل

Q-reflexive Banach Spaces

Let E be a Banach space. There are several natural ways in which any polynomial P ∈ P(E) can be extended to P̃ ∈ P(E), in such a way that the extension mapping is continuous and linear (see, for example, [6]). Taking the double transpose of the extension mapping P → P̃ yields a linear, continuous mapping from P(E) into P(E). Further, since P(E) is a dual space, it follows that there is a natural ...

متن کامل

A Universal Reflexive Space for the Class of Uniformly Convex Banach Spaces

We show that there exists a separable reflexive Banach space into which every separable uniformly convex Banach space isomorphically embeds. This solves a problem of J. Bourgain. We also give intrinsic characterizations of separable reflexive Banach spaces which embed into a reflexive space with a block q-Hilbertian and/or a block p-Besselian finite dimensional decomposition.

متن کامل

Locally Uniformly Convex Norms in Banach Spaces and Their Duals

It is shown that a Banach space with locally uniformly convex dual admits an equivalent norm that is itself locally uniformly convex.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1941

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1941-07451-3